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Abstract

This paper presents a new scheme of time stepping for solving non-linear viscoelastic problems with a two-level
expanding technique. By expanding variables at a discretized time interval, a non-linear coupled space/time domain
problem with initial and boundary values can be converted into a series of recursive linear boundary value problems,
the variations of variables can be described more precisely via a self-adaptive computing procedure, and the non-linear
iteration can be avoided. FEM is employed to solve recursive linear boundary value problems, and numerical com-
parisons are made to validate the proposed algorithm.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Non-linear analysis is necessary for the practical application of viscoelastic materials which do not
comply with linear viscoelastic theory under some conditions (see e.g. Aklonis and Macknight, 1983; Zhou
and Liu, 1996). During the past decades, a number of constitutive models of non-linear viscoelasticity have
been developed, among which integral model is convenient for mathematical analysis and experimental
determination of material characteristics, and is therefore widely used in practical engineering (see e.g.
Bernstein et al., 1965; Findley and Onaran, 1965; Christensen, 1980; Schapery, 1969).

In addition to constitutive models, another important aspect of non-linear viscoelastic analysis is the
investigation of stress and deformation. Due to the complex material properties, boundary conditions, and
boundary shapes, etc., analytical solutions to non-linear viscoelastic problems are hardly obtained in gen-
eral, thus a variety of numerical solutions have been presented. The deflections of viscoelastic cantilever
beams are investigated by Rogers in an interative method (see e.g. Rogers and Lee, 1962), and Holden in one
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order central FD technique with a simple finite summation relation (see e.g. Holden, 1972). Henriksen made
a two-dimensional FEM based nonlinear viscoelastic analysis of an isotropic material (see e.g. Henriksen,
1984), who adopted a linearized assumption which probably limits the size of time step and degrades
computing accuracy. By employing Schapery’s integral model, one of the most commonly applied non-linear
viscoelastic models (see e.g. Beijer and Spoormaker, 2002), Tuttle and Brinson predicted non-linear visco-
elastic response of laminated composites (see e.g. Tuttle and Brinson, 1986), Roy and Reddy offered a similar
analysis with an additional consideration of large displacement and moisture diffusion (see e.g. Roy and
Reddy, 1988a,b). Kennedy and Wang gave a fully three-dimensional non-linear viscoelastic analysis of
laminated composites (see e.g. Kennedy and Wang, 1994). Touati and Cederbaum solved viscoelastic post
buckling problems via a transformation between integral and differential equations (see e.g. Touati and
Cederbaum, 1997). Kennedy gave a non-linear viscoelastic analysis with a layered shell element (see e.g.
Kennedy, 1998). Recently, the dynamic response of structures with fractional differential operator of
damping was obtained by Ingman and Suzdalnitsky in an iteration method via Laplace and Fourier
transformations and series expansion (see e.g. Ingman and Suzdalnitsky, 2001). Beijer provided efficient
FEM based strategies for analyzing non-linear viscoelastic polymers. (see e.g. Beijer and Spoormaker, 2002).

In the work mentioned above, the adaptability of computing accuracy to the change of sizes of time
steps (see e.g. Yang, 1999a,b), which is generally difficult to be predicted in the computation, seems not
to be much noted, furthermore non-linear iterations were usually required. With these considerations, a
self-adaptive precise algorithm in time domain for a non-linear differential-integral equation system,
without requiring iteration for the non-linear solutions, is presented in this paper. Previously this kind
of algorithm was only used for the solution of differential equation system (see e.g. Yang, 1999a,b,
2000, 2001). By expending all variables at two levels at a discretized time interval, a non-linear
differential-integral equation system with boundary and initial values is converted into a series of
recurrent linear boundary value problems for which corresponding FEM based formulae have been
derived. In the process of solving recursive FE equations, a self-adaptive computation can be carried
out with different sizes of time steps. Good accordance can be observed by comparing the results given
by proposed approach with an analytical solution, the solutions obtained by Houbolt time inte-
gral algorithms (see e.g. Chung and Hulbert, 1994) and a recursive method (see e.g. Henriksen, 1984).

2. Recursive governing equations

One-dimensional governing equations of dynamic viscoelastic problems can be described by (see e.g.
Christensen, 1982)

Oo o%u

4 B=p— 1
% B=raa (1)

Ou
_ 2
e=7. (2)
The boundary conditions are specified by

u=1u, xel, 3)
0=p= i)a X € FU <4)

where ¢ and ¢ denote the stress and strain, respectively, B is the body force, p designates the mass density, u
is the displacement, p denotes the traction, & and p are the prescribed values of u and p on I', and I,
respectively, I' = I', + I, represents the whole boundary of the problem.
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We divide time domain into a number of intervals where the initial points and sizes of time intervals are
defined by 7o, t,t,...,4,... and T}, T, ..., Ty, ..., respectively. At a discretized time interval, in order to
describe the variation of variables more precisely, all variables are expanded in the term of s

o= o"s" (5)

m=0
&= Z g"s" (6)
m=0
B=>) B"s" (7)
m=0
u=>y u"s" (8)
m=0
= u"s" 9)
m=0
p=) r" (10)
m=0
p=)_ p"s" (11)
m=0
R A/
==

where #;,_; and T, represent the initial point and size of kth time interval, respectively, ¢” and ¢&” are the
expanding coeflicients of ¢ and ¢, B” denotes the expanding coefficient of B, v”, p”, #” and p™ are the
expanding coefficients of u, p, # and p.

The conversion relationship of differentials from ¢ to s is

d_14d
dl‘iTk ds
¢ 1
de 17 ds?

Substitution of Egs. (5)—(11) for Egs. (1)-(4) then yields

aam m o p(m + 1)(7}1 + 2) m+2

B = 7 u (12)
aum

m 13
o (13)

u"=u", onl, (14)



5486 H. Yang, Z. Han | International Journal of Solids and Structures 41 (2004) 54835498

3. Recursive constitutive equation

A non-linear viscoelastic constitutive equation in an integral form can be described by (see e.g Zhou and
Liu, 1996)

s(t)z%—/’amar[ 1E /f o) de (16)
where E(¢) denotes Young’s modulus, 7o is the lower limit of integration.

1/E(t) = A(t) = a + he ™ (17)

f(0) = 2o + id? (18)

C(t,7) = ple)(1 — ) + Y(x) — p(1) (19)

(1) =c+de ™ (20)

b(1) = g e1)

a, b, ¢, d, q, g and y are material data to be given.

Two kinds of variables are involved in Egs. (16)—(21), and related to 7 and ¢, respectively. Thus a
two-level expanding technique is adopted. One level is for variables concerned with 7 in the
integration via an expanding variable &, another level is for variables relevant to ¢, via an expanding
variable s.

At the first level, ¢(t), A(7), ¢(r) and Y(t) are expanded as

&) = 2‘3 a"e" (22)
A(E) = a+ he " Tti) = g 4 pe e = g 4 he P ; ( (_ZT!k)m > &= ;Amé’" (23)
A" = a4 he b1 4™ = he %, m=1,273,...

0(&) = ¢ + de tTé+io) = ¢ 4 ge~bin Z <( bT)" ) = Z Q" (24)
m=0 m=0
o' =c+de "1, " =de " % m=1273,...
P (&) = ge slietin) — gemsi Z ng => yren (25)
m=0 m=0
Y" = ge &% (_i—T!k)m, m=0,1,2,...
el =" (T”;i—’/')mf'" => epe” (26)

m=0 ' m=0
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. m=0,1,2,...

where 4™, @™, ", €y denote the expanding coefficients of 4(&), ¢(&), Y(&) and e’

T =l

&= 7. €10, s].

The conversion relationship of differentials from 7 to & is

0 00 10

ot 0ot T, OF

At the second level, o(¢) and &(¢) in Eq. (16) are expanded by Egs. (5) and (6), 4(¢) is expanded by

A(s) = ZA"”S’" (27)

m=0
A" = A" m=0,1,2,...

e ", decomposed from e 7¢~% with e’* in Eq. (19), is expanded by

e_kas _ Z T;{Y Zem m (28)

m=0 m=0
—T.\"
e';':( n:!’) C m=0,1,2,...

where e} denotes the expanding coefficient of e 7.

At the first time interval where ¢ € [y, 79 + T}], substituting Eqs. (5) and (6) and Egs. (22)—(28) into
Eq. (16) can yield

Z( mArm)S_/ <’ m+1[4m+lrm>§d€
=() m=l m

— 0o v Z <Z<m+1)§0m+10rm)frdi+a erlnsm
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Integrating right-hand side of Eq. (29) with respect to & then gives

ZOO:S’SV — i.o: (zr:o'mArm>Sr _ i ; (rzlz(m + l)AerlGrml)Sr

n=0

r—1 = 1 ;
1
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m=0

00 r—1 k n+1
+OCZ (Zkil (Z I’l+1 <Z+:(Pm n— m+l> )e;i—k—l>sr
1
P
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+
_ Ai % ( 3 ( " (m+ 1)1V"+1(r”"”> o"_”_1>sr (30)

where r denotes the power of expanding variable s.
Equating the powers on the two sides of Eq. (30) then yields

r—1

—1
Zo.mAi m Z m+ 1 Am+l r—m—1 —OC% Z(m+ 1)(pm+lo_r—m—1
=0
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1=0 +1 k=0 n=0
)1 = i 1 m+1 _n—m r—n—1 33
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ey and Ty in A™, @™, Y", e} and ¢4 in Eqs. (23)-(28) are replaced by 7, and 7, respectively.
Assuming that the solution from 7, to #_; has been obtained, we consider the solution from #,_; to ¢, at
the interval where ¢ € [t,_,#_1 + T;], and re-arrange Eq. (16) in the form
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e(6) = o(DA() — C1 — / " o(0) %A(f) dr— C2 4 ae~"C3 + Je~"C4
- [ o)+ 20) - l00) = o) 0+ (e) — () (34
where
cl = / () %A(r) dr (35)
C2= [ (ao(e) + (@) 5 lole) + ¥ — pl0)] de (36)
3 = / a(f)%[q)(f)eﬂ] dr (37)
C4 = / a(f)a%[(p(f)eﬂ] dr (38)

C1, C2, C3, C4 can be obtained via the solution from 7, to #_;.
Using the similar expanding technique adopted above, recursive equations of Eq. (34) can be obtained

d4’ =¢ —EPT(r), r#0 (39)

EPT(r) = ET(r) + ae 7% ¢[C3 + je 71 ¢,C4 (40)

4. Implementation of FEM

For Egs. (12)—(15), the framework of a FEM based solution can be established by utilizing a conven-
tional weighted residual technique (see e.g. Zienkiewicz and Morgan, 1983), having the form
G 1 2
/ " [a‘;ﬂzm _pmtDim+2) T)z(’" + )um+2]Asdx +Aspt (" — @)y, — Asu' — (" — )| =0 (41)
0

where u* and p* denote weighting functions, and 4 represents the area of cross section.
By utilizing the theorem of integral by part, Eq. (41) can be written as

!
/ u* |:Bm _ p(m + 1)(m+2) um+2:| dx+u*pm
0

T2

/ au*
- o"dx +u'p"| =0 4
r / il i (42)

u

In the implementation of FEM, u™ is evaluated in the terms of their nodal values at the element level,
having the form

" = Ni" (43)

where N represents a matrix of shape function, and #” denotes the nodal vector of u”.
Weighting function «* can be described in the same form

= N (44)

where u* represent the nodal vector of u*.
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Substitution of Eqgs. (43) and (44) for (42) then yields

D payay = )+ By - Y [ Moy (45)
where

M) = /Q N'pN dx (46)

B =Y [N (E e (47)

) = >N (49)

N’ represents a matrix of derivatives of N.
At the first time interval where ¢ € [1g, 79 + 73], substitution of Egs. (31) and (32) for Eq. (45) gives
1

B = B+ )~ o 3 [ v (49)

e+ I)Tl(z’" 2wy = BY + (o) + > /Q NTET() dx

_%Z /Q NTN'{a) dx (50)

where {u}" denotes the general nodal vector of u™.
At the time interval where ¢ € [#,_1,#_; + T;], substitution of Eq. (39) for Eq. (45) then yields

o M = (34 G~ 55 3 [ N as 1)
w M){a}** = (B} + {p}" + % ; /Q e N'TEPT(r) dx

_%Z/QN/TN/{L—l}rdx (52)

At the first time interval, {z}° and {u}' are provided by initial conditions, at the kth time interval, they will
be given by

{u},_, = Z{ﬁ}m (in the (k — 1)th time interval) (53)
m=0
{ad =Y 1+ 1) 6™ (in the (k — 1)th time interval) (54)

By utilizing Eqs. (49)—(54) with initial conditions, the problem defined by Eq. (1)-(4) and (16) can be solved
step by step, and non-linear iteration can be avoided.
A self-adaptive computation is carried out at each time interval with a convergence criterion

Abs ( <u;jsm / mi uisf> > <p (55)
j=0 s=1

where £ is an error bound, ﬁi denotes kth component of {ﬁ}’ G=12,...,r).
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Every {u}" (m=1,2,...) is required to be checked with the above criterion, if the criteria is satisfied
continually 3 times, computing will stop at the time interval considered, and step into next one. If the
criteria is not met, (m + 1)th recursive computation will continue till the convergence.

In the computation, mm, a upper bound of m, will be prescribed previously. If computing can not stop
when m = mm, it is necessary to reduce the size of time step or increase mm; if condition (55) is satisfied
when m < mm, a bigger size of time step can be considered. At each of discretized time intervals, truncation
error depends on f, and can be estimated by K which is the highest power when criteria (55) is satisfied, the
order of truncation error is therefore Kz + 1.

All the above procedure can be realized by a program automatically.

5. Numerical examples
5.1. Linear dynamic viscoelastic problem

Consider the motion of a mass attached to a massless viscoelastic rod as shown in Fig. 1 where the
governing equation of u is specified by

Mit+ Ao =P

The relationship of displacement and strain is described by ¢ = u/L.
Constitutive equation is a Kelvin model that can be written in an integral form

t
() = / olqrde,  (790/q)
0

or in a differential form
0=qoe+q¢

where M = 100, 4 = 0.02, L = 2, gy = 60,000, ¢; = 50, 000.

Table 1 exhibits the comparison between the solution obtained by the proposed algorithm for the dif-
ferential-integral system and those given by the scheme for the differential systems, and an analytical
solution (see e.g. Yang et al., 2001).

5.2. Non-linear static viscoelastic problem

This example considers the static analysis of a viscoelastic round rod as shown in Fig. 2 where / = 200
cm, d =20 cm, p = 0.01 kg/cm?. The rod is subjected to a constant extension force P = 31415.9 kg. The

/] -
//I P

I L ~
< >

Fig. 1. A mass attached to a massless viscoelastic rod.
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Table 1
Numerical comparison of a linear dynamic viscoelastic problem with Kelvin model
p t u (Integral model) u (Differential u (Analytical
model) solution)
Uniform time step=0.2 0.2 2.440607E—-03 2.440599E-03 2.440603E—-03
P =sin(z) 0.4 3.028552E-03 3.028516E—-03 3.028514E-03
Initial displacement =0.0 0.0001 0.6 2.894332E-03 2.894302E-03 2.894300E—-03
Initial velocity = 0.02 0.8 2.557278E-03 2.557295E-03 2.557293E-03
1.0 2.232911E-03 2.233016E-03 2.233015E-03

—> p

OO\

~J
! 1

Fig. 2. A non-linear viscoelastic rod.

constitutive relationship is described by Eq. (16) where y = 3.2407 x 107%/s, a = 0.27 x 107°, b = 0.015,
c=08x10"°d=02x10"° ¢g=0.61 x 107, g =0.005, » = 0.38a, « + /1 = 1.

Numerical comparison is exhibited in Tables 2 and 3 and Fig. 3 where the analytical solution is given by
(see e.g. Appendix A)

o =100 kg/cm?,  u(t,x) = (dA(10) + (20 + Ac*)C(t,70))x

Henriksen’s method in Tables 2 and 3 refers to the work given by Henriksen (see e.g. Henriksen, 1984).

Table 2
Numerical comparison of a linear static viscoelastic problem (o = 1.0, 4 = 0.0)
B t ul,_, (Proposed ul,_; (Analytical ul,_, (Henriksen’s
algorithm) solution) method)
Uniform time 0.2 0.068603118987226 0.068603118987226 0.068603118987226
step=0.2
P =314159 kg 0.4 0.069668277991610 0.069668277991610 0.069668277991610
0.6 0.070681089219966 0.070681089219967 0.070681089219967
0.8 0.071644397918591 0.071644397918591 0.071644397918591
1.0 0.072560894384859 0.072560894384859 0.072560894384859
Table 3

Numerical comparison of a non-linear static viscoelastic problem (o = 0.995, 2 = 0.005)

t

u|._, (Proposed algorithm)

u|,_, (Analytical solution)

u|,_, (Henriksen’s method)

Uniform time 0.2 0.06915777383011 0.06915777382997 0.06915777382892
step=0.2

P =314159 kg 0.4 0.07075018604001 0.07075018603969 0.07075018603765

0.6 0.07226433834946 0.07226433834890 0.07226433834593

0.8 0.07370448440033 0.07370448439948 0.07370448439562

1.0 0.07507464618591 0.07507464618474 0.07507464618004
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0.156} | —« Analytical solution 4
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D A DB 1 1 1 1 1 1 1 1
30 40 50 60 70 80 90 100 110 120
time(day)

Fig. 3. Numerical comparison of non-linear static solutions.

5.3. Non-linear dynamic viscoelastic problem

This example illustrates free and forced vibrations of a non-linear viscoelastic rod shown in Fig. 2 where
computing parameters are the same as those used in the Example 5.2.

Numerical comparison is given in Tables 4 and 5, and Figs. 4-6 where it can be observed that the
precision of presented self-adaptive algorithm has not been affected by the change of size of time steps,
whereas when size of time step=0.07s, notable degradation of precision can be seen in the Houbolt
algorithm based solution (see e.g. Chung and Hulbert, 1994), as shown in Fig. 6.

Table 4
Numerical comparison of free vibration of a linear viscoelastic dynamic problem (¢ = 1.0, = 0.0)
t ul|,_, p=0.0000001 ul,_, f=10.0000001 u|,_, (Houbolt u|,_, (Houbolt u|,_, (Houbolt
(Proposed algorithm) (Proposed algorithm) algorithm) algorithm) algorithm)
Uniform time step Uniform time step Uniform time Uniform time Uniform time
=0.01 =0.05 step=0.0001 step=0.001 step=0.05
0.05 0.20991797 0.20991724 0.20991770 0.20991755 0.20713907
0.10 0.19856094 0.19854581 0.19856008 0.19855984 0.19514576
0.15 0.18811936 0.18808918 0.18811849 0.18811853 0.18779845
0.20 0.18144076 0.18141607 0.18144088 0.18144123 0.18344093
0.25 0.17553374 0.17552580 0.17553461 0.17553476 0.17581971
Table 5
Numerical comparison of free vibration of a non-linear dynamic viscoelastic problem (o = 0.995, 2 = 0.005)
t u|,_, (Proposed u|,_, (Proposed u|,_, (Houbolt u|,_, (Houbolt u|,_, (Houbolt
algorithm) algorithm) algorithm) algorithm) algorithm)
Uniform time step ~ Uniform time step ~ Uniform time Uniform time Uniform time
=0.01 =0.05 step=0.0001 step=0.001 step=0.05
0.05 0.20992894 0.20992797 0.20992842 0.20992829 0.20718364
0.10 0.19862666 0.19860527 0.19861920 0.19861897 0.19521788
0.15 0.18827681 0.18821127 0.18823989 0.18823992 0.18789230
0.20 0.18168778 0.18160691 0.18163111 0.18163147 0.18363860

0.25 0.17587062 0.17582863 0.17583715 0.17583732 0.17619707




5494 H. Yang, Z. Han | International Journal of Solids and Structures 41 (2004) 54835498

0.2 T T T : . . .
015+ —%— Houbolt algorithm | |
01} |
0051 |

displacement
o

015

02 L 1 1 1 L 1 ) L
20 30 40 50 60 70 80 90 100 110
time(day)

Fig. 4. Numerical comparison of free non-linear vibration (u(/) = 0.215 cm, u(/) = 0.0).

02 T T T T T T T T
—s— Proposed algorithm
—— Houbolt algorithm
015} y g
it
01} X 5 -
&
g 005+ B
[
o
d
g of -
©
0051 o y E
3
01F E
0.15 1 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100 110
time(day)

Fig. 5. Numerical comparison of forced non-linear vibration (P(¢) = 504 sin(¢) kg, u(/) = 0.0, u(/) = 0.0215 cm).

displacement
o

—— Proposed algorithm T=0.07
0.15¢ —— Houbott algorithm T=0.05 7
—&~- Houbot algorithm T=0.07

02 L ' L 1 L

25 30 35 40 45 50 55
time(day)

Fig. 6. Comparison of the precision of non-linear free vibration (u(/) = 0.215 cm, i(/) = 0.0).
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For the solution of free vibration, Figs. 7 and 8 show the variations of recursion steps in the whole self-
adaptive computing process. It is obvious that recursion steps increase with the expansion of sizes of time

Table 6

Numerical comparison of free vibration with non-uniform and uniform sizes of time steps

Fig. 7. The variation of recursion steps in the computing for non-linear free vibration with uniform time step =0.05.

Fig. 8. The variation of recursion steps in the computing for non-linear free vibration with uniform time step =0.2.

recursion steps

1

4 1 1
28 29 30

3

time(day)

32

33

Y8 8B 8

recursion steps

~N
N

20

18

28 30 32 34 36

40 42

time(day)

44

48

t p u|._, (Proposed algorithm) u| _, (Proposed algorithm)
Variational sizes of time steps Uniform time step =0.02
0.2 Size of time step =0.02 0.181634327 0.181634327
0.9 Size of time step = 0.04 0.072620927 0.072602554
1.3 Size of time step =0.04 0.012820230 0.012819433
2.3 0.000001 Size of time step = 0.08 —-0.137571746 —-0.137567538
3.1 Size of time step = 0.08 —-0.091271220 —0.091312303
5.1 Size of time step=0.16 0.194604353 0.194590394
6.7 Size of time step=0.16 0.118072247 0.117846597
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25

recursion steps

0 . ) . ) ! . .
28 29 30 kil 32 33 34 35 36
time(day)

Fig. 9. The variation of recursion steps in the computing for non-linear free vibration with non-uniform sizes of time steps.

steps. In Table 6, a satisfactory comparison of solutions with non-uniform and uniform sizes of time steps is
demonstrated. The variations of recursion steps are shown in Fig. 9.

6. Conclusions

This paper presents a new algorithm of time stepping for solving non-linear viscoelastic problems, the
merits of this algorithm include

1. A coupled differential and integral equation system with initial and boundary values is converted into a
series of recurrent linear boundary value problems which are solved by FEM as in the case of static elas-
ticity. In addition to EFM, other well developed numerical approaches can also be employed with regard
to the characteristics of the problem, including in-homogeneity, complex boundary geometry, and
boundary conditions, etc.

2. Self-adaptive computation can provide a more precise description for the variation of variables, and
compensate for the possible loss of computing accuracy caused by improper choices of the size of time
step.

3. For non-linear cases, no assumption is ever made, and no iteration is ever needed.

Due to the good performance of numerical validation, the proposed method can hopefully be utilized to
solve more complicated problems.
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Appendix A

Eq. (1) is met by substituting ¢ = 100 kg/cm? into Eq. (1) in the static case with B = 0.
For Eq. (4), one has

0, = 4P/nd* = 100 kg/cm?
Substituting ¢ = 100 kg/cm? into Eq. (16) gives

&(t) = aA(ty) + (a0 + 16°)C(t, 70) (A.1)
Integrating Eq. (A.1) with u| _, = 0 then yields

u(t,x) = x{ad(zy) + (o + 26*)C(t,70)}
Therefore Eq. (1)-(4), and (16) are all satisfied.

References

Aklonis, J.J., Macknight, W.J., 1983. Introduction to Polymer Viscoelasticity. John Wiley & Sons, New York.

Beijer, J.G.J., Spoormaker, J.L., 2002. Solution strategies for FEM analysis with non-linear viscoelastic polymers. Comput. Struct. 80,
1213-1229.

Bernstein, B., Kearsley, E.A., Zapas, L.J., 1965. Elastic stress—strain relations in perfect elastic fluids. Trans. Soc. Rheol. 9, 27.

Christensen, R.M., 1980. A nonlinear theory of viscoelasticity for application to elastomers. J. Appl. Mech. 47, 295-310.

Christensen, R.M., 1982. Theory of Viscoelasticity. Academic Press, New York.

Chung, J., Hulbert, G.M., 1994. A family of single-step Houbolt time integration algorithms for structural dynamics. Comput.
Methods Appl. Methods Engrg. 118, 1-11.

Findley, W.N., Onaran, K., 1965. Combined stress creep experiments on a non-linear viscoelastic material to determine the Kernel
functions for a multiple integral representation of creep. Trans. Soc. Rheol. 9 (2), 299.

Henriksen, M., 1984. Nonlinear viscoelastic stress analysis-a finite element approach. Comput. Struct. 18, 133-139.

Holden, J.T., 1972. On the finite deflection of thin viscoelastic beams. Int. J. Num. Methods Engrg. 5, 271-275.

Ingman, D., Suzdalnitsky, J., 2001. Iteration method for equation of viscoelastic motion with fractional differential operator of
damping. Comput. Methods Appl. Mech. Engrg. 190, 5027-5036.

Kennedy, T.C., 1998. Nonlinear viscoelastic analysis of composite plates and shells. Comput. Struct. 141, 265-272.

Kennedy, T.C., Wang, M., 1994. Three-dimensional, nonlinear viscoelastic analysis of laminated composited. J. Comput. Mater. 8,
902-925.

Rogers, T.G., Lee, E.H., 1962. On the finite deflection of a viscoelastic cantilever. In: Proceedings of the 4th United States National
Congress. pp. 977-987.

Roy, S., Reddy, J.N., 1988a. A finite element analysis of adhesively bonded composite joints with moisture diffusion and delayed
failure. Comput. Struct. 29, 1011-1031.

Roy, S., Reddy, J.N., 1988b. Finite element models of viscoelasticity and diffusion in adhesively bonded joints. Int. J. Num. Methods
Eng. 26, 2531-2546.

Schapery, R.A., 1969. Further development of a thermodynamic constitutive theory: stress formulation. Purdue Res. Foundation,
Project No. 4958.

Touati, D., Cederbaum, G., 1997. Post buckling analysis of imperfect nonlinear viscoelastic columns. Int. J. Solids Struct. 34, 1751-
1760.

Tuttle, M.E., Brinson, H.F., 1986. Prediction of the long-term creep compliance of general composite laminates. Exp. Mech. 26, 89—
102.

Yang, H., 1999a. A precise algorithm in time domain to solve the problem of heat transfer. Numer. Heat Transfer, Part B 35 (2), 243—
249.

Yang, H., 1999b. A new approach of time stepping for solving transfer problems. Commun. Numer. Methods Engrg. 15, 325-
334.

Yang, H., Guo, X., 2000. Perturbation boundary-finite element combined method for solving the linear creep problem. Int. J. Solids
Struct. 37, 2167-2183.



5498 H. Yang, Z. Han | International Journal of Solids and Structures 41 (2004) 54835498

Yang, H., Gao, Q., Guo, X., Wu, C., 2001. A new algorithm of time stepping in the non-linear dynamic analysis. Commun. Numer.
Methods Engrg. 17, 597-611.

Zhou, G., Liu, X., 1996. The Viscoelasticity Theory. Press of University of Science and Technology of China.

Zienkiewicz, O.C., Morgan, K., 1983. Finite Element and Approximation. Wiley-Interscience Publication, New York.



	Solving non-linear viscoelastic problems via a self-adaptive precise algorithm in time domain
	Introduction
	Recursive governing equations
	Recursive constitutive equation
	Implementation of FEM
	Numerical examples
	Linear dynamic viscoelastic problem
	Non-linear static viscoelastic problem
	Non-linear dynamic viscoelastic problem

	Conclusions
	Acknowledgements
	Appendix A
	References


