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Abstract

This paper presents a new scheme of time stepping for solving non-linear viscoelastic problems with a two-level

expanding technique. By expanding variables at a discretized time interval, a non-linear coupled space/time domain

problem with initial and boundary values can be converted into a series of recursive linear boundary value problems,

the variations of variables can be described more precisely via a self-adaptive computing procedure, and the non-linear

iteration can be avoided. FEM is employed to solve recursive linear boundary value problems, and numerical com-

parisons are made to validate the proposed algorithm.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Non-linear analysis is necessary for the practical application of viscoelastic materials which do not

comply with linear viscoelastic theory under some conditions (see e.g. Aklonis and Macknight, 1983; Zhou

and Liu, 1996). During the past decades, a number of constitutive models of non-linear viscoelasticity have

been developed, among which integral model is convenient for mathematical analysis and experimental
determination of material characteristics, and is therefore widely used in practical engineering (see e.g.

Bernstein et al., 1965; Findley and Onaran, 1965; Christensen, 1980; Schapery, 1969).

In addition to constitutive models, another important aspect of non-linear viscoelastic analysis is the

investigation of stress and deformation. Due to the complex material properties, boundary conditions, and

boundary shapes, etc., analytical solutions to non-linear viscoelastic problems are hardly obtained in gen-

eral, thus a variety of numerical solutions have been presented. The deflections of viscoelastic cantilever

beams are investigated by Rogers in an interative method (see e.g. Rogers and Lee, 1962), and Holden in one
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order central FD technique with a simple finite summation relation (see e.g. Holden, 1972). Henriksen made

a two-dimensional FEM based nonlinear viscoelastic analysis of an isotropic material (see e.g. Henriksen,

1984), who adopted a linearized assumption which probably limits the size of time step and degrades

computing accuracy. By employing Schapery’s integral model, one of the most commonly applied non-linear
viscoelastic models (see e.g. Beijer and Spoormaker, 2002), Tuttle and Brinson predicted non-linear visco-

elastic response of laminated composites (see e.g. Tuttle and Brinson, 1986), Roy and Reddy offered a similar

analysis with an additional consideration of large displacement and moisture diffusion (see e.g. Roy and

Reddy, 1988a,b). Kennedy and Wang gave a fully three-dimensional non-linear viscoelastic analysis of

laminated composites (see e.g. Kennedy and Wang, 1994). Touati and Cederbaum solved viscoelastic post

buckling problems via a transformation between integral and differential equations (see e.g. Touati and

Cederbaum, 1997). Kennedy gave a non-linear viscoelastic analysis with a layered shell element (see e.g.

Kennedy, 1998). Recently, the dynamic response of structures with fractional differential operator of
damping was obtained by Ingman and Suzdalnitsky in an iteration method via Laplace and Fourier

transformations and series expansion (see e.g. Ingman and Suzdalnitsky, 2001). Beijer provided efficient

FEM based strategies for analyzing non-linear viscoelastic polymers. (see e.g. Beijer and Spoormaker, 2002).

In the work mentioned above, the adaptability of computing accuracy to the change of sizes of time

steps (see e.g. Yang, 1999a,b), which is generally difficult to be predicted in the computation, seems not

to be much noted, furthermore non-linear iterations were usually required. With these considerations, a

self-adaptive precise algorithm in time domain for a non-linear differential–integral equation system,

without requiring iteration for the non-linear solutions, is presented in this paper. Previously this kind
of algorithm was only used for the solution of differential equation system (see e.g. Yang, 1999a,b,

2000, 2001). By expending all variables at two levels at a discretized time interval, a non-linear

differential–integral equation system with boundary and initial values is converted into a series of

recurrent linear boundary value problems for which corresponding FEM based formulae have been

derived. In the process of solving recursive FE equations, a self-adaptive computation can be carried

out with different sizes of time steps. Good accordance can be observed by comparing the results given

by proposed approach with an analytical solution, the solutions obtained by Houbolt time inte-

gral algorithms (see e.g. Chung and Hulbert, 1994) and a recursive method (see e.g. Henriksen, 1984).
2. Recursive governing equations

One-dimensional governing equations of dynamic viscoelastic problems can be described by (see e.g.

Christensen, 1982)
or
ox

þ B ¼ q
o2u
ot2

ð1Þ

e ¼ ou
ox

ð2Þ
The boundary conditions are specified by
u ¼ ~u; x 2 Cu ð3Þ

r ¼ p ¼ ~p; x 2 Cr ð4Þ
where r and e denote the stress and strain, respectively, B is the body force, q designates the mass density, u
is the displacement, p denotes the traction, ~u and ~p are the prescribed values of u and p on Cu and Cr,
respectively, C ¼ Cu þ Cr represents the whole boundary of the problem.



H. Yang, Z. Han / International Journal of Solids and Structures 41 (2004) 5483–5498 5485
We divide time domain into a number of intervals where the initial points and sizes of time intervals are

defined by s0; t1; t2; . . . ; tk; . . . and T1; T2; . . . ; Tk; . . ., respectively. At a discretized time interval, in order to

describe the variation of variables more precisely, all variables are expanded in the term of s
r ¼
X
m¼0

rmsm ð5Þ

e ¼
X
m¼0

emsm ð6Þ

B ¼
X
m¼0

Bmsm ð7Þ

u ¼
X
m¼0

umsm ð8Þ

~u ¼
X
m¼0

~umsm ð9Þ

p ¼
X
m¼0

pmsm ð10Þ

~p ¼
X
m¼0

~pmsm ð11Þ

s ¼ t � tk�1

Tk
where tk�1 and Tk represent the initial point and size of kth time interval, respectively, rm and em are the

expanding coefficients of r and e, Bm denotes the expanding coefficient of B, um, pm, ~um and ~pm are the

expanding coefficients of u, p, ~u and ~p.
The conversion relationship of differentials from t to s is
d

dt
¼ 1

Tk

d

ds

d2

dt2
¼ 1

T 2
k

d2

ds2
Substitution of Eqs. (5)–(11) for Eqs. (1)–(4) then yields
orm

ox
þ Bm ¼ qðmþ 1Þðmþ 2Þ

T 2
k

umþ2 ð12Þ

em ¼ oum

ox
ð13Þ

um ¼ ~um; on Cu ð14Þ

rm ¼ pm ¼ ~pm; on Cr ð15Þ
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3. Recursive constitutive equation

A non-linear viscoelastic constitutive equation in an integral form can be described by (see e.g Zhou and

Liu, 1996)
eðtÞ ¼ rðtÞ
EðtÞ �

Z t

s0

rðsÞ o

os
1

EðsÞ

� �
ds�

Z t

s0

f ½rðsÞ� o
os

Cðt; sÞds ð16Þ
where EðtÞ denotes Young’s modulus, s0 is the lower limit of integration.
1=EðtÞ ¼ AðtÞ ¼ aþ he�bt ð17Þ

f ðrÞ ¼ arþ kr2 ð18Þ

Cðt; sÞ ¼ uðsÞð1� e�cðt�sÞÞ þ wðsÞ � wðtÞ ð19Þ

uðsÞ ¼ cþ de�bs ð20Þ

wðsÞ ¼ qe�gs ð21Þ

a, b, c, d, q, g and c are material data to be given.

Two kinds of variables are involved in Eqs. (16)–(21), and related to s and t, respectively. Thus a

two-level expanding technique is adopted. One level is for variables concerned with s in the

integration via an expanding variable n, another level is for variables relevant to t, via an expanding

variable s.
At the first level, rðsÞ, AðsÞ, uðsÞ and wðsÞ are expanded as
rðnÞ ¼
X
m¼0

rmnm ð22Þ

AðnÞ ¼ aþ he�bðTknþtk�1Þ ¼ aþ he�btk�1e�bTkn ¼ aþ he�btk�1

X
m¼0

ð�bTkÞm

m!

� �
nm ¼

X
m¼0

Amnm ð23Þ

A0 ¼ aþ he�btk�1 ; Am ¼ he�btk�1
ð�bTkÞm

m!
; m ¼ 1; 2; 3; . . .

uðnÞ ¼ cþ de�bðTknþtk�1Þ ¼ cþ de�btk�1

X
m¼0

ð�bTkÞm

m!

� �
nm ¼

X
m¼0

umnm ð24Þ

u0 ¼ cþ de�btk�1 ; um ¼ de�btk�1
ð�bTkÞm

m!
; m ¼ 1; 2; 3; . . .

wðnÞ ¼ qe�gðTknþtk�1Þ ¼ qe�gtk�1

X
m¼0

ð�gTkÞm

m!
nm ¼

X
m¼0

wmnm ð25Þ

wm ¼ qe�gtk�1
ð�gTkÞm

m!
; m ¼ 0; 1; 2; . . .

ecTkn ¼
X
m¼0

ðTkcÞm

m!
nm ¼

X
m¼0

em2 n
m ð26Þ
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em2 ¼ ðTkcÞm

m!
; m ¼ 0; 1; 2; . . .
where Am, um, wm, em2 denote the expanding coefficients of AðnÞ, uðnÞ, wðnÞ and eT cn.
n ¼ s� tk�1

Tk
; n 2 ½0; s�:
The conversion relationship of differentials from s to n is
o

os
¼ o

on
on
os

¼ 1

Tk

o

on
At the second level, rðtÞ and eðtÞ in Eq. (16) are expanded by Eqs. (5) and (6), AðtÞ is expanded by
AðsÞ ¼
X
m¼0

A0msm ð27Þ

A0m ¼ Am; m ¼ 0; 1; 2; . . .
e�ct, decomposed from e�cðt�sÞ with ecs in Eq. (19), is expanded by
e�cTks ¼
X
m¼0

ð�TkcÞm

m!
sm ¼

X
m¼0

em1 s
m ð28Þ

em1 ¼ ð�TkcÞm

m!
; m ¼ 0; 1; 2; . . .
where em1 denotes the expanding coefficient of e�T cs.

At the first time interval where t 2 ½s0; s0 þ T1�, substituting Eqs. (5) and (6) and Eqs. (22)–(28) into

Eq. (16) can yield
X
r¼0

ersr ¼
X
r¼0

Xr
m¼0

rmAr�m

 !
sr�

Z s

0

X
r¼0

Xr
m¼0

ðm
 

þ1ÞAmþ1rr�m

!
nrdn

�a
Z s

0

X
r¼0

Xr
m¼0

ðm
 

þ1Þumþ1rr�m

!
nrdnþa

X
m¼0

em1 s
m

Z s

0

X
k¼0

Xk
n¼0

ðn
 

þ1Þ
Xn
m¼0

umen�mþ1
2

 !
rk�n

!
nkdn

�a
Z s

0

X
r¼0

Xr
m¼0

ðm
 

þ1Þwmþ1rr�m

!
nrdn�k

Z s

0

X
r¼0

Xr
n¼0

Xn
m¼0

ðm
  

þ1Þumþ1rn�m

!
rr�n

!
nrdn

þk
X
m¼0

em1 s
m

Z s

0

X
l¼0

Xl
k¼0

Xk
n¼0

ðn
  

þ1Þ
Xnþ1

m¼0

umen�mþ1
2

 !
rk�n

!
rl�k

!
nldn

�k
Z sX Xr Xn

ðm
  

þ1Þwmþ1rn�m

!
rr�n

!
nrdn ð29Þ
0 r¼0 n¼0 m¼0
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Integrating right-hand side of Eq. (29) with respect to n then gives
X1
r¼0

ersr ¼
X1
r¼0

Xr
m¼0

rmAr�m

 !
sr �

X1
r¼1

1

r

Xr�1

m¼0

ðm
 

þ 1ÞAmþ1rr�m�1

!
sr

� a
X1
r¼1

1

r

Xr�1

m¼0

ðm
 

þ 1Þumþ1rr�m�1

!
sr

þ a
X1
r¼1

Xr�1

k¼0

1

k þ 1

Xk
n¼0

ðn
  

þ 1Þ
Xnþ1

m¼0

umen�mþ1
2

 !
rk�n

!
er�k�1
1

!
sr

� a
X1
r¼1

1

r

Xr�1

m¼0

ðm
 

þ 1Þwmþ1rr�m�1

!
sr � k

X1
r¼1

1

r

Xr�1

n¼0

Xn
m¼0

ðm
  

þ 1Þumþ1rn�m

!
rr�n�1

!
sr

þ k
X1
r¼1

Xr�1

l¼0

1

lþ 1

Xl
k¼0

Xk
n¼0

ðn
   

þ 1Þ
Xnþ1

m¼0

umen�mþ1
2

 !
rk�n

!
rl�k

!
er�l�1
1

!
sr

� k
X1
r¼1

1

r

Xr�1

n¼0

Xn
m¼0

ðm
  

þ 1Þwmþ1rn�m

!
rr�n�1

!
sr ð30Þ
where r denotes the power of expanding variable s.
Equating the powers on the two sides of Eq. (30) then yields
e0 ¼ r0A0; r ¼ 0 ð31Þ
rrA0 ¼ er � ETðrÞ; r 6¼ 0 ð32Þ
where
ETðrÞ ¼
Xr�1

m¼0

rmAr�m � 1

r

Xr�1

m¼0

ðmþ 1ÞAmþ1rr�m�1 � a
1

r

Xr�1

m¼0

ðmþ 1Þumþ1rr�m�1

þ a
Xr�1

k¼0

1

k þ 1

Xk
n¼0

ðn
 

þ 1Þ
Xnþ1

m¼0

umen�mþ1
2

 !
rk�n

!
er�k�1
1

� a
1

r

Xr�1

m¼0

ðmþ 1Þwmþ1rr�m�1 � k
1

r

Xr�1

n¼0

Xn
m¼0

ðm
 

þ 1Þumþ1rn�m

!
rr�n�1

þ k
Xr�1

l¼0

1

lþ 1

Xl
k¼0

Xk
n¼0

ðn
  

þ 1Þ
Xnþ1

m¼0

umen�mþ1
2

 !
rk�n

!
rl�k

!
er�l�1
1

� k
1

r

Xr�1

n¼0

Xn
m¼0

ðm
 

þ 1Þwmþ1rn�m

!
rr�n�1 ð33Þ
tk�1 and Tk in Am, um, wm, em1 and em2 in Eqs. (23)–(28) are replaced by s0 and T1, respectively.
Assuming that the solution from s0 to tk�1 has been obtained, we consider the solution from tk�1 to t, at

the interval where t 2 ½tk�1; tk�1 þ Tk�, and re-arrange Eq. (16) in the form
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eðtÞ ¼ rðtÞAðtÞ � C1�
Z t

tk�1

rðsÞ o

os
AðsÞds� C2þ ae�ctC3þ ke�ctC4

�
Z t

tk�1

ðarðsÞ þ kr2ðsÞÞ o

os
½uðsÞ � uðsÞe�cðt�sÞ þ wðsÞ � wðtÞ�ds ð34Þ
where
C1 ¼
Z tk�1

s0

rðsÞ o

os
AðsÞds ð35Þ

C2 ¼
Z tk�1

s0

ðarðsÞ þ kr2ðsÞÞ o

os
½uðsÞ þ wðsÞ � wðtÞ�ds ð36Þ

C3 ¼
Z tk�1

s0

rðsÞ o

os
½uðsÞecs�ds ð37Þ

C4 ¼
Z tk�1

s0

rðsÞ o

os
½uðsÞecs�ds ð38Þ
C1, C2, C3, C4 can be obtained via the solution from s0 to tk�1.

Using the similar expanding technique adopted above, recursive equations of Eq. (34) can be obtained
rrA0 ¼ er � EPTðrÞ; r 6¼ 0 ð39Þ

EPTðrÞ ¼ ETðrÞ þ ae�ctk�1er1C3þ ke�ctk�1er1C4 ð40Þ
4. Implementation of FEM

For Eqs. (12)–(15), the framework of a FEM based solution can be established by utilizing a conven-

tional weighted residual technique (see e.g. Zienkiewicz and Morgan, 1983), having the form
Z l

0

u�
orm

ox

�
þ Bm � qðmþ 1Þðmþ 2Þ

T 2
umþ2

�
AS dxþ ASp�ðum � ~umÞjCu

� ASu� � ðpm � ~pmÞjCr
¼ 0 ð41Þ
where u� and p� denote weighting functions, and AS represents the area of cross section.

By utilizing the theorem of integral by part, Eq. (41) can be written as
Z l

0

u� Bm

�
� qðmþ 1Þðmþ 2Þ

T 2
umþ2

�
dxþ u�pm

Cu

���� �
Z l

0

ou�

ox
rm dxþ u�~pm

����
Cr

¼ 0 ð42Þ
In the implementation of FEM, um is evaluated in the terms of their nodal values at the element level,

having the form
um ¼ N�um ð43Þ
where N represents a matrix of shape function, and �um denotes the nodal vector of um.
Weighting function u� can be described in the same form
u� ¼ N�u� ð44Þ
where �u� represent the nodal vector of u�.
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Substitution of Eqs. (43) and (44) for (42) then yields
ðmþ 1Þðmþ 2Þ
T 2
m

½M �f�ugmþ2 ¼ f�pgm þ fBgm �
X
e¼1

Z
Xe

N 0frgmdv ð45Þ
where
½M � ¼
X
e¼1

Z
Xe

NTqN dx ð46Þ

fBgm ¼
XZ

NTfBmgdx ð47Þ

f�pgm ¼
X
e¼1

NTf�pmg ð48Þ
N 0 represents a matrix of derivatives of N .

At the first time interval where t 2 ½s0; s0 þ T1�, substitution of Eqs. (31) and (32) for Eq. (45) gives
2

T 2
1

½M �f�ug2 ¼ fBg0 þ f�pg0 � 1

A0

X
e¼1

Z
Xe

N 0TN 0f�ug0 dx ð49Þ

ðr þ 1Þðr þ 2Þ
T 2
1

½M �f�ugrþ2 ¼ fBgr þ f�pgr þ 1

A0

X
e¼1

Z
Xe

N 0TETðrÞdx

� 1

A0

X
e¼1

Z
Xe

N 0TN 0f�ugr dx ð50Þ
where f�ugm denotes the general nodal vector of um.
At the time interval where t 2 ½tk�1; tk�1 þ Tk�, substitution of Eq. (39) for Eq. (45) then yields
2

T 2
kþ1

½M �f�ug2 ¼ fBg0 þ f�pg0 � 1

A0

X
e¼1

Z
Xe

N 0TN 0f�ug0 dx ð51Þ

ðr þ 1Þðr þ 2Þ
T 2
kþ1

½M �f�ugrþ2 ¼ fBgr þ f�pgr þ 1

A0

X
e¼1

Z
Xe

N 0TEPTðrÞdx

� 1

A0

X
e¼1

Z
Xe

N 0TN 0f�ugr dx ð52Þ
At the first time interval, f�ug0 and f�ug1 are provided by initial conditions, at the kth time interval, they will

be given by
f�ugs¼1 ¼
X
m¼0

f�ugm ðin the ðk � 1Þth time intervalÞ ð53Þ

f�u;tgs¼1 ¼
X
m¼0

ðmþ 1Þ
Tk�1

f�ugmþ1 ðin the ðk � 1Þth time intervalÞ ð54Þ
By utilizing Eqs. (49)–(54) with initial conditions, the problem defined by Eq. (1)–(4) and (16) can be solved

step by step, and non-linear iteration can be avoided.

A self-adaptive computation is carried out at each time interval with a convergence criterion
Abs �umk s
m=
Xm�1

j¼0

�ujks
j

 !
s¼1

 !
6 b ð55Þ
where b is an error bound, �ujk denotes kth component of f�ugj ðj ¼ 1; 2; . . . ; rÞ.
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Every f�ugm ðm ¼ 1; 2; . . .Þ is required to be checked with the above criterion, if the criteria is satisfied

continually 3 times, computing will stop at the time interval considered, and step into next one. If the

criteria is not met, ðmþ 1Þth recursive computation will continue till the convergence.

In the computation, mm, a upper bound of m, will be prescribed previously. If computing can not stop
when m ¼ mm, it is necessary to reduce the size of time step or increase mm; if condition (55) is satisfied

when m � mm, a bigger size of time step can be considered. At each of discretized time intervals, truncation

error depends on b, and can be estimated by Kb which is the highest power when criteria (55) is satisfied, the

order of truncation error is therefore Kb þ 1.

All the above procedure can be realized by a program automatically.
5. Numerical examples

5.1. Linear dynamic viscoelastic problem

Consider the motion of a mass attached to a massless viscoelastic rod as shown in Fig. 1 where the

governing equation of u is specified by
M€uþ Ar ¼ P
The relationship of displacement and strain is described by e ¼ u=L.
Constitutive equation is a Kelvin model that can be written in an integral form
eðtÞ ¼ e�ct

Z t

0

ecsr=q1 ds; ðcq0=q1Þ
or in a differential form
r ¼ q0eþ q1 _e
where M ¼ 100, A ¼ 0:02, L ¼ 2, q0 ¼ 60; 000, q1 ¼ 50; 000.
Table 1 exhibits the comparison between the solution obtained by the proposed algorithm for the dif-

ferential–integral system and those given by the scheme for the differential systems, and an analytical

solution (see e.g. Yang et al., 2001).

5.2. Non-linear static viscoelastic problem

This example considers the static analysis of a viscoelastic round rod as shown in Fig. 2 where l ¼ 200

cm, d ¼ 20 cm, q ¼ 0:01 kg/cm3. The rod is subjected to a constant extension force P ¼ 31415:9 kg. The
Fig. 1. A mass attached to a massless viscoelastic rod.



Fig. 2. A non-linear viscoelastic rod.

Table 1

Numerical comparison of a linear dynamic viscoelastic problem with Kelvin model

b t u (Integral model) u (Differential

model)

u (Analytical

solution)

Uniform time step¼ 0.2 0.2 2.440607E)03 2.440599E)03 2.440603E)03
P ¼ sinðtÞ 0.4 3.028552E)03 3.028516E)03 3.028514E)03
Initial displacement¼ 0.0 0.0001 0.6 2.894332E)03 2.894302E)03 2.894300E)03
Initial velocity¼ 0.02 0.8 2.557278E)03 2.557295E)03 2.557293E)03

1.0 2.232911E)03 2.233016E)03 2.233015E)03
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constitutive relationship is described by Eq. (16) where c ¼ 3:2407� 10�6/s, a ¼ 0:27� 10�6, b ¼ 0:015,
c ¼ 0:8� 10�6, d ¼ 0:2� 10�6, q ¼ 0:61� 10�5, g ¼ 0:005, h ¼ 0:38a, aþ k ¼ 1.

Numerical comparison is exhibited in Tables 2 and 3 and Fig. 3 where the analytical solution is given by

(see e.g. Appendix A)
Table

Nume

Uni

st

P ¼

Table

Nume

Uni

st

P ¼
r ¼ 100 kg=cm2; uðt; xÞ ¼ ðrAðs0Þ þ ðarþ kr2ÞCðt; s0ÞÞx
Henriksen’s method in Tables 2 and 3 refers to the work given by Henriksen (see e.g. Henriksen, 1984).
2

rical comparison of a linear static viscoelastic problem ða ¼ 1:0; k ¼ 0:0Þ
b t ujx¼l (Proposed

algorithm)

ujx¼l (Analytical

solution)

ujx¼l (Henriksen’s

method)

form time

ep¼ 0.2

0.2 0.068603118987226 0.068603118987226 0.068603118987226

31415:9 kg 0.4 0.069668277991610 0.069668277991610 0.069668277991610

0.000001 0.6 0.070681089219966 0.070681089219967 0.070681089219967

0.8 0.071644397918591 0.071644397918591 0.071644397918591

1.0 0.072560894384859 0.072560894384859 0.072560894384859

3

rical comparison of a non-linear static viscoelastic problem ða ¼ 0:995; k ¼ 0:005Þ
b t ujx¼l (Proposed algorithm) ujx¼l (Analytical solution) ujx¼l (Henriksen’s method)

form time

ep¼ 0.2

0.2 0.06915777383011 0.06915777382997 0.06915777382892

31415:9 kg 0.4 0.07075018604001 0.07075018603969 0.07075018603765

0.000001 0.6 0.07226433834946 0.07226433834890 0.07226433834593

0.8 0.07370448440033 0.07370448439948 0.07370448439562

1.0 0.07507464618591 0.07507464618474 0.07507464618004



Fig. 3. Numerical comparison of non-linear static solutions.
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5.3. Non-linear dynamic viscoelastic problem

This example illustrates free and forced vibrations of a non-linear viscoelastic rod shown in Fig. 2 where

computing parameters are the same as those used in the Example 5.2.

Numerical comparison is given in Tables 4 and 5, and Figs. 4–6 where it can be observed that the

precision of presented self-adaptive algorithm has not been affected by the change of size of time steps,
whereas when size of time step¼ 0.07s, notable degradation of precision can be seen in the Houbolt

algorithm based solution (see e.g. Chung and Hulbert, 1994), as shown in Fig. 6.
Table 4

Numerical comparison of free vibration of a linear viscoelastic dynamic problem ða ¼ 1:0; k ¼ 0:0Þ
t ujx¼l b ¼ 0:0000001

(Proposed algorithm)

ujx¼l b ¼ 0:0000001

(Proposed algorithm)

ujx¼l (Houbolt

algorithm)

ujx¼l (Houbolt

algorithm)

ujx¼l (Houbolt

algorithm)

Uniform time step

¼ 0.01

Uniform time step

¼ 0.05

Uniform time

step¼ 0.0001

Uniform time

step¼ 0.001

Uniform time

step¼ 0.05

0.05 0.20991797 0.20991724 0.20991770 0.20991755 0.20713907

0.10 0.19856094 0.19854581 0.19856008 0.19855984 0.19514576

0.15 0.18811936 0.18808918 0.18811849 0.18811853 0.18779845

0.20 0.18144076 0.18141607 0.18144088 0.18144123 0.18344093

0.25 0.17553374 0.17552580 0.17553461 0.17553476 0.17581971

Table 5

Numerical comparison of free vibration of a non-linear dynamic viscoelastic problem ða ¼ 0:995; k ¼ 0:005Þ
t ujx¼l (Proposed

algorithm)

ujx¼l (Proposed

algorithm)

ujx¼l (Houbolt

algorithm)

ujx¼l (Houbolt

algorithm)

ujx¼l (Houbolt

algorithm)

Uniform time step

¼ 0.01

Uniform time step

¼ 0.05

Uniform time

step¼ 0.0001

Uniform time

step¼ 0.001

Uniform time

step¼ 0.05

0.05 0.20992894 0.20992797 0.20992842 0.20992829 0.20718364

0.10 0.19862666 0.19860527 0.19861920 0.19861897 0.19521788

0.15 0.18827681 0.18821127 0.18823989 0.18823992 0.18789230

0.20 0.18168778 0.18160691 0.18163111 0.18163147 0.18363860

0.25 0.17587062 0.17582863 0.17583715 0.17583732 0.17619707



Fig. 4. Numerical comparison of free non-linear vibration ðuðlÞ ¼ 0:215 cm, _uðlÞ ¼ 0:0Þ.

Fig. 5. Numerical comparison of forced non-linear vibration ðPðtÞ ¼ 50A sinðtÞ kg, _uðlÞ ¼ 0:0, uðlÞ ¼ 0:0215 cm).

Fig. 6. Comparison of the precision of non-linear free vibration ðuðlÞ ¼ 0:215 cm, _uðlÞ ¼ 0:0Þ.
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For the solution of free vibration, Figs. 7 and 8 show the variations of recursion steps in the whole self-

adaptive computing process. It is obvious that recursion steps increase with the expansion of sizes of time
Fig. 7. The variation of recursion steps in the computing for non-linear free vibration with uniform time step¼ 0.05.

Fig. 8. The variation of recursion steps in the computing for non-linear free vibration with uniform time step¼ 0.2.

Table 6

Numerical comparison of free vibration with non-uniform and uniform sizes of time steps

t b ujx¼l (Proposed algorithm) ujx¼l (Proposed algorithm)

Variational sizes of time steps Uniform time step¼ 0.02

0.2 Size of time step¼ 0.02 0.181634327 0.181634327

0.9 Size of time step¼ 0.04 0.072620927 0.072602554

1.3 Size of time step¼ 0.04 0.012820230 0.012819433

2.3 0.000001 Size of time step¼ 0.08 )0.137571746 )0.137567538
3.1 Size of time step¼ 0.08 )0.091271220 )0.091312303
5.1 Size of time step¼ 0.16 0.194604353 0.194590394

6.7 Size of time step¼ 0.16 0.118072247 0.117846597



Fig. 9. The variation of recursion steps in the computing for non-linear free vibration with non-uniform sizes of time steps.
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steps. In Table 6, a satisfactory comparison of solutions with non-uniform and uniform sizes of time steps is

demonstrated. The variations of recursion steps are shown in Fig. 9.
6. Conclusions

This paper presents a new algorithm of time stepping for solving non-linear viscoelastic problems, the

merits of this algorithm include

1. A coupled differential and integral equation system with initial and boundary values is converted into a

series of recurrent linear boundary value problems which are solved by FEM as in the case of static elas-

ticity. In addition to EFM, other well developed numerical approaches can also be employed with regard

to the characteristics of the problem, including in-homogeneity, complex boundary geometry, and

boundary conditions, etc.
2. Self-adaptive computation can provide a more precise description for the variation of variables, and

compensate for the possible loss of computing accuracy caused by improper choices of the size of time

step.

3. For non-linear cases, no assumption is ever made, and no iteration is ever needed.

Due to the good performance of numerical validation, the proposed method can hopefully be utilized to

solve more complicated problems.
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Appendix A

Eq. (1) is met by substituting r ¼ 100 kg/cm2 into Eq. (1) in the static case with B ¼ 0.

For Eq. (4), one has
rx¼L ¼ 4P=pd2 ¼ 100 kg=cm2
Substituting r ¼ 100 kg/cm2 into Eq. (16) gives
eðtÞ ¼ rAðs0Þ þ ðarþ kr2ÞCðt; s0Þ ðA:1Þ
Integrating Eq. (A.1) with ujx¼0 ¼ 0 then yields
uðt; xÞ ¼ xfrAðs0Þ þ ðarþ kr2ÞCðt; s0Þg
Therefore Eq. (1)–(4), and (16) are all satisfied.
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